Latest Research on the Effects of Nicotine

Shocking revelations in a Scientific Study. People hate nicotine

The number of people that equate the risks of e-cigarettes nicotine delivery system with that of traditional cigarette combustion proves once again that people will believe anything if we see or hear it on the news or know someone who did. Why is this misinformation being put out there with governments knee-jerking into action? Because kids are using them? Um, they were smoking already and probably are smart enough to know that if they’re gonna use, use the safest. But more importantly, the electronic cigarette industry has been gung-ho for years on some good regulations that will keep it out of the hands of kids and let the adults have their nicotine if they bloody well want it.

Here’s a cut and paste of a research paper I believe was compiled in April 2014. With apologees to author, I’ll give the link to the full study below.

Risk differences compared with conventional cigarettes and the issue of nicotine

Conventional cigarettes are the most common form of nicotine intake. Smoking-related diseases are pathophysiologically attributed to oxidative stress, activation of inflammatory pathways and the toxic effect of more than 4000 chemicals and carcinogens present in tobacco smoke [Environmental Protection Agency, 1992]. In addition, each puff contains >1 × 1015 free radicals [Pryor and Stone, 1993]. All of these chemicals are emitted mostly during the combustion process, which is absent in ECs. Although the addictive potential of nicotine and related compounds is largely documented [Guillem et al. 2005], much less dissemination has been given to the notion that nicotine does not contribute to smoking-related diseases. It is not classified as a carcinogen by the International Agency for Research on Cancer [WHO-IARC, 2004] and does not promote obstructive lung disease. A major misconception, commonly supported even by physicians, is that nicotine promotes cardiovascular disease. However, it has been established that nicotine itself has minimal effect in initiating and promoting atherosclerotic heart disease [Ambrose and Barua, 2004]. It does not promote platelet aggregation [Zevin et al. 1998], does not affect coronary circulation [Nitenberg and Antony, 1999] and does not adversely alter the lipid profile [Ludviksdottir et al. 1999]. An observational study of more than 33,000 smokers found no evidence of increased risk for myocardial infarction or acute stroke after NRT subscription, although follow up was only 56 days [Hubbard et al. 2005]. Up to 5 years of nicotine gum use in the Lung Health Study was unrelated to cardiovascular diseases or other serious side effects [Murray et al.1996]. A meta-analysis of 35 clinical trials found no evidence of cardiovascular or other life-threatening adverse effects caused by nicotine intake [Greenland et al. 1998]. Even in patients with established cardiovascular disease, nicotine use in the form of NRTs does not increase cardiovascular risk [Woolf et al.2012Benowitz and Gourlay, 1997]. It is anticipated that any product delivering nicotine without involving combustion, such as the EC, would confer a significantly lower risk compared with conventional cigarettes and to other nicotine containing combustible products.
The importance of using nicotine in the long-term was recognized several years ago by Russell, indicating that the potential of nicotine delivery systems as long-term alternatives to tobacco should be explored in order to make the elimination of tobacco a realistic future target [Russell, 1991]. However, current regulations restrict the long-term use of pharmaceutical or recreational nicotine products (such as snus) [Le Houezec et al. 2011]. In other words, nicotine intake has been demonized, although evidence suggests that, besides being useful in smoking cessation, it may even have beneficial effects in a variety of disorders such as Parkinson’s disease [Nielsen et al. 2013], depression [McClernon et al. 2006], dementia [Sahakian et al.1989] and ulcerative colitis [Guslandi, 1999]. Obviously, the addictive potential is an important factor in any decision to endorse nicotine administration; however, it should be considered as slight ‘collateral damage’ with minimal impact to vapers’ health compared with the tremendous benefit of eliminating all disease-related substances coming from tobacco smoking. In fact, smokers are already addicted to nicotine; therefore the use of a ‘cleaner’ form of nicotine delivery would not represent any additional risk of addiction. Surveys have shown that ECs are used as long-term substitutes to smoking [Dawkins et al. 2013; Etter and Bullen, 2012]. Although consumers try to reduce nicotine use with ECs, many are unable to completely stop its intake, indicating an important role for nicotine in the ECs’ effectiveness as a smoking substitute [Farsalinos et al.2013b].
Nicotine overdose or intoxication is unlikely to occur with vaping, since the amount consumed [Farsalinos et al. 2013c] and absorbed [Nides et al. 2014Dawkins and Corcoran, 2013] is quite low. Moreover, although not yet proven, it is expected that vapers will self-titrate their nicotine intake in a similar way to tobacco cigarettes [Benowitz et al. 1998]. Last, but not least, there is evidence suggesting that nicotine cannot be delivered as fast and effectively from ECs compared to tobacco cigarettes [Farsalinos et al. 2014]. Therefore, it seems that ECs have a huge theoretical advantage in terms of health risks compared with conventional cigarettes due to the absence of toxic chemicals that are generated in vast quantities by combustion. Furthermore, nicotine delivery by ECs is unlikely to represent a significant safety issue, particularly when considering they are intended to replace tobacco cigarettes, the most efficient nicotine delivery product.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110871/
US National Library of Medicine
National Institutes of Health